A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems.
نویسندگان
چکیده
A meristem-specific gene coding for deoxyuridine triphosphatase (EC 3.6.1.23) (dUTPase) in tomato was isolated, and its developmental expression in vegetative and floral apices was monitored. An 18-kD polypeptide, P18, was isolated as a consequence of its accumulation in arrested floral meristems of anantha mutant plants. The corresponding cDNA isolated from an expression library exhibited a 40 to 60% similarity with the pseudoprotease sequences of poxviruses, genes that have been suggested to encode dUTPases. Enzymatic tests and conservation of peptide motifs common to bacterial and viral genes verified that the P18 cDNA clone indeed represents a eukaryotic dUTPase. Immunogold localization and in situ hybridization experiments showed that polypeptides and transcripts of dUTPase are maintained at high levels in apical meristematic cells of vegetative and floral meristems. dUTPase gene activity is also high in the potentially meristematic cells of the provascular and vascular system. Its expression is lower in the immediate parenchymal derivatives of the apical meristematic cells, and this downregulation marks, perhaps, the transition from totipotency to the first differentiated state.
منابع مشابه
A Nleristem-Related Gene from Tomato Encodes a dUTPase: Analysis of Expression in Vegetative and Floral Meristems
A meristem-specific gene coding for deoxyuridine triphosphatase (EC 3.6.1.23) (dUTPase) in tomato was isolated, and its developmental expression in vegetative and floral apices was monitored. An 18-kD polypeptide, P18, was isolated as a consequence of its accumulation in arrested floral meristems of anantha mutant plants. The corresponding cDNA isolated from an expression library exhibited a 40...
متن کاملThe gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1.
The regulation of floral organ number is closely associated with floral meristem size. Mutations in the gene FLORAL ORGAN NUMBER1 (FON1) cause enlargement of the floral meristem in Oryza sativa (rice), resulting in an increase in the number of all floral organs. Ectopic floral organs develop in the whorl of each organ and/or in the additional whorls that form. Inner floral organs are more sever...
متن کاملRate of meristem maturation determines inflorescence architecture in tomato.
Flower production and crop yields are highly influenced by the architectures of inflorescences. In the compound inflorescences of tomato and related nightshades (Solanaceae), new lateral inflorescence branches develop on the flanks of older branches that have terminated in flowers through a program of plant growth known as "sympodial." Variability in the number and organization of sympodial bra...
متن کاملThe SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We sh...
متن کاملULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 4 2 شماره
صفحات -
تاریخ انتشار 1992